domingo, 23 de marzo de 2014

las unidades de memoria y sistemas de numeración

UNIDADES DE MEMORIA
  BIT: puede tener valore de 0 y 1, es decir sistema binario
  BYTE: son 8 Bits.
 KILOBYTE (KB) = 2 **10 bytes
 MEGABYTE (MB) = 2 ** 10 Kilobyte = 2 ** 20 Bytes
 GIGABYTE (GB) = 2** 10 Megabyte = 2** 30 Bytes
 TERABYTE (TB) =2**10 Gigabyte = 2**40 Bytes
Es necesario aclarar que las unidades son infinitas, pero las antes nombradas son las usadas.
BIT: su nombre se debe a la contracción de Binary Digit, es la mínima unidad de información y puede ser un cero o un uno
BYTE: es la también conocida como el octeto, formada por ocho bits, que es la unidad básica, las capacidades de almacenamiento en las computadoras se organiza en potencias de dos, 16, 32, 64.
Las demás unidades son solo múltiplos de las anteriores, por ello cada una de ellas están formadas por un determinado numero de Bits.


Sistemas de numeración

Un sistema de numeración es un conjunto de símbolos y reglas que permi­ten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbo­lo tiene distinto valor según la posición que ocupa en la cifra.
  1.  Sistema de numeración decimal:
El sistema de numeración que utiliza­mos habitualmente es el decimal, que se compone de diez símbolos o dígi­tos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.
El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la de­recha.
En el sistema decimal el número 528, por ejemplo, significa:

5 centenas + 2 decenas + 8 unidades, es decir:
5*102 + 2*101 + 8*100 o, lo que es lo mismo:
500 + 20 + 8 = 528

En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concreta­mente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número8245,97 se calcularía como:

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos
8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:
8000 + 200 + 40 + 5 + 0,9 + 0,07 = 8245,97

 Sistema de numeración binario.
El sistema de numeración binario utiliza sólo dos dígitos, el cero (0) y el uno (1).
En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.
De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:

1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11

y para expresar que ambas cifras describen la misma cantidad lo escribimos así:

10112 = 1110

  1.  Conversión entre números decimales y binarios
Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.
Por ejemplo, para convertir al sistema binario el número 7710 haremos una serie de divisiones que arrojarán los restos siguientes:
77 : 2 = 38 Resto: 1
38 : 2 = 19 Resto: 0
19 : 2 = 9 Resto: 1
9 : 2 = 4 Resto: 1
4 : 2 = 2 Resto: 0
2 : 2 = 1 Resto: 0
1 : 2 = 0 Resto: 1
y, tomando los restos en orden inverso obtenemos la cifra binaria:

7710 = 10011012

Ejercicio 1:
Expresa, en código binario, los números decimales siguientes:  191, 25, 67, 99, 135, 276

  1.  El tamaño de las cifras binarias
La cantidad de dígitos necesarios para representar un número en el sistema binario es mayor que en el sistema decimal. En el ejemplo del párrafo anterior, para representar el número 77, que en el sistema decimal está compuesto tan sólo por dos dígitos, han hecho falta siete dígitos en binario.
Para representar números grandes harán falta muchos más dígitos. Por ejemplo, para representar números mayores de 255 se necesitarán más de ocho dígitos, porque 28 = 256 y podemos afirmar, por tanto, que 255 es el número más grande que puede representarse con ocho dígitos.
Como regla general, con n dígitos binarios pueden representarse un máximo de 2n, números. El número más grande que puede escribirse con n dígitos es una unidad menos, es decir, 2n – 1. Con cuatro bits, por ejemplo, pueden representarse un total de 16 números, porque 24 = 16 y el mayor de dichos números es el 15, porque 24-1 = 15.

Ejercicio 2:
Averigua cuántos números pueden representarse con 8, 10, 16 y 32 bits y cuál es el número más grande que puede escribirse en cada caso.

Ejercicio 3:
Dados dos números binarios: 01001000 y 01000100 ¿Cuál de ellos es el mayor? ¿Podrías compararlos sin necesidad de convertirlos al sistema decimal?
  1.  Conversión de binario a decimal
El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.
Por ejemplo, para convertir el número binario 10100112 a decimal, lo desarrollamos teniendo en cuenta el valor de cada bit:

1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 83
10100112 = 8310

Ejercicio 4:
Expresa, en el sistema decimal, los siguientes números binarios:
110111, 111000, 010101, 101010, 1111110

 Sistema de numeración octal
El inconveniente de la codificación binaria es que la representación de algunos números resulta muy larga. Por este motivo se utilizan otros sistemas de numeración que resulten más cómodos de escribir: el sistema octal y el sistema hexadecimal. Afortunadamente, resulta muy fácil convertir un número binario a octal o a hexadecimal.
En el sistema de numeración octal, los números se representan mediante ocho dígitos diferentes: 0, 1, 2, 3, 4, 5, 6 y 7. Cada dígito tiene, naturalmente, un valor distinto dependiendo del lu­gar que ocupen. El valor de cada una de las posiciones viene determinado por las potencias de base 8.
Por ejemplo, el número octal 2738 tiene un valor que se calcula así:
2*83 + 7*82 + 3*81 = 2*512 + 7*64 + 3*8 = 149610

2738 = 149610

  1.  Conversión de un número decimal a octal
La conversión de un número decimal a octal se hace con la misma técnica que ya hemos utilizado en la conversión a binario, mediante divisiones sucesivas por 8 y colocando los restos obtenidos en orden inverso. Por ejemplo, para escribir en octal el número decimal 12210 tendremos que hacer las siguientes divisiones:
122 : 8 = 15     Resto: 2
15 : 8 = 1           Resto: 7
1 : 8 = 0               Resto: 1
Tomando los restos obtenidos en orden inverso tendremos la cifra octal:

12210 = 1728
Ejercicio 5:
Convierte los siguientes números decimales en octales:  6310,   51310,   11910

  1.  Conversión octal a decimal
La conversión de un número octal a decimal es igualmente sencilla, conociendo el peso de cada posición en una cifra octal. Por ejemplo, para convertir el número 2378 a decimal basta con desarrollar el valor de cada dígito:
2*82 + 3*81 + 7*80 = 128 + 24 + 7 = 15910

2378 = 15910

Ejercicio 6:
Convierte al sistema decimal los siguientes números octales: 458,   1258,   6258

 Sistema de numeración hexadecimal
En el sistema hexadecimal los números se representan con dieciséis símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Se utilizan los caracteres A, B, C, D, E y F representando las cantidades decima­les 10, 11, 12, 13, 14 y 15 respectivamente, porque no hay dígitos mayores que 9 en el sistema decimal. El valor de cada uno de estos símbolos depende, como es lógico, de su posición, que se calcula mediante potencias de base 16.
Calculemos, a modo de ejemplo, el valor del número hexadecimal 1A3F16:

1A3F16 = 1*163 + A*162 + 3*161 + F*160

1*4096 + 10*256 + 3*16 + 15*1 = 6719

1A3F16 = 671910

Ejercicio 7:
Expresa en el sistema decimal las siguientes cifras hexadecimales: 2BC516,  10016,  1FF16

Ensayemos, utilizando la técnica habitual de divisiones sucesivas, la conversión de un número decimal a hexadecimal. Por ejemplo, para convertir a hexadecimal del número 173510 será necesario hacer las siguientes divisiones:

1735 : 16 = 108    Resto: 7
108 : 16 = 6           Resto: C es decir, 1210
6 : 16 = 0                Resto: 6
De ahí que, tomando los restos en orden inverso, resolvemos el número en hexadecimal:
173510 = 6C716

Ejercicio 8:
Convierte al sistema hexadecimal los siguientes números decimales: 351910, 102410, 409510

  1.  Conversión de números binarios a octales y viceversa
Observa la tabla siguiente, con los siete primeros números expresados en los sistemas decimal, binario y octal:
DECIMAL
BINARIO
OCTAL
0
000
0
1
001
1
2
010
2
3
011
3
4
100
4
5
101
5
6
110
6
7
111
7

Cada dígito de un número octal se representa con tres dígitos en el sistema binario. Por tanto, el modo de conver­tir un número entre estos sistemas de numeración equivale a "expandir" cada dígito octal a tres dígitos bi­narios, o en "contraer" grupos de tres caracteres binarios a su correspondiente dígito octal.

Por ejemplo, para convertir el número binario 1010010112 a octal tomaremos grupos de tres bits y los sustituiremos por su equivalente octal:
1012 = 58
0012 = 18
0112 = 38
y, de ese modo: 1010010112 = 5138

Ejercicio 9:
Convierte los siguientes números binarios en octales: 11011012, 1011102, 110110112, 1011010112

La conversión de números octales a binarios se hace, siguiendo el mismo método, reemplazando cada dígito octal por los tres bits equivalentes. Por ejemplo, para convertir el número octal 7508 a binario, tomaremos el equivalente binario de cada uno de sus dígitos: 
78 = 1112
58 = 1012
08 = 0002
y, por tanto: 7508 = 1111010002

Ejercicio 10:
Convierte los siguientes números octales en binarios: 258, 3728, 27538

  1.  Conversión de números binarios a hexadecimales y viceversa
Del mismo modo que hallamos la correspondencia entre números octales y binarios, podemos establecer una equivalencia directa entre cada dígito hexadecimal y cuatro dígitos binarios, como se ve en la siguiente tabla:


DECIMAL
BINARIO
HEXADECIMAL
0
0000
0
1
0001
1
2
0010
2
3
0011
3
4
0100
4
5
0101
5
6
0110
6
7
0111
7
8
1000
8
9
1001
9
10
1010
A
11
1011
B
12
1100
C
13
1101
D
14
1110
E
15
1111
F

La conversión entre números hexadecimales y binarios se realiza "expandiendo" o "con­trayendo" cada dígito hexadecimal a cuatro dígitos binarios. Por ejemplo, para expresar en hexadecimal el número binario 1010011100112 bastará con tomar grupos de cuatro bits, empezando por la derecha, y reemplazarlos por su equivalente hexadecimal:  
10102 = A16
01112 = 716
00112 = 316
y, por tanto: 1010011100112 = A7316

En caso de que los dígitos binarios no formen grupos completos de cuatro dígitos, se deben añadir ceros a la izquierda hasta completar el último grupo. Por ejemplo:
1011102 = 001011102 = 2E16



La conversión de números hexadecimales a binarios se hace del mismo modo, reemplazando cada dígito hexadecimal por los cuatro bits equivalentes de la tabla. Para convertir a binario, por ejemplo, el número hexadecimal 1F616 hallaremos en la tabla las siguientes equivalencias:

116 = 00012
F16 = 11112
616 = 01102
y, por tanto: 1F616 = 0001111101102

No hay comentarios.:

Publicar un comentario